SQL Cheat ShGEt Steve Nouri

-- Joins:

® — SQL Commands, Functions & Clauses

[NNER JOIN - returns rows that have matching values in both tables

OUTER JOIN - returns rows that have matching values in either of the
-- Basic SQL commands:

two tables
i LEFT JOIN - returns all rows from the left table and any matchin
SELECT - retrieves data from a database L) &
FROM - specifies which tables to retrieve data from rows from the right table
WHERE - specifies which rows to retrieve based on certain conditions RIGHT JOIN - returns all rows from the right table and any matching
GROUP BY - groups rows that have the same values in the specified columns rows from the left table

HAVING - Tilters groups based on a specified condition FULL JOIN - returns all rows from both tables, whether or not there

ORDER BY - sorts the retrieved rows in a specified order)
are matching values

_ : _ CROSS JOIN - returns all rows from both tables, with each row from
Aggregate functions: 2
the first table being paired with each row from the second table
AVG() - returns the average value of a set of values
COUNT() - returns the number of rows in a table or the number of non-null values Set operations:
in a column
FIRST() - returns the first value in a set of values .
. _ UNTON - combines the results of two or more SELECT statements,
LAST() - returns the last value in a set of values
MAX() - returns the maximum value in a set of values eliminating duplicates
HIM() - returns the minimum value 1n a set of values UNION ALL - CDMbinES thE I"ESI.I].tE ot two or more SELECT StﬂtEI'IIEI'ItS,
SUM() - returns the sum of a set of values including duplicates
INTERSECT - returns rows that are present in the results of two or

-- String functions: _
more SELECT statements

EXCEPT - returns rows that are present in the first SELECT statement
CONCAT() - concatenates two or more strings together _ _ B
o] o _ but not in the results of any subsequent SELECT statements
INSTR() - returns the position of a substring within a string
LENGTH() - returns the length of a string

LOWER() - converts a string to lowercase Subqueries:

LTRIM() - removes leading spaces from a string

REPLACE() - replaces all occurrences of a specified string with SELECT - retrieves data from a database within another SELECT
another string statement
RTRIM() - removes trailing spaces from a string FROM - specifies which tables to retrieve data from within the
SUBSTR() - returns a portion of a string subquery
TRIM() - removes leading and trailing spaces from a string WHERE - specifies which rows to retrieve based on certain conditions
UPPER() - converts a string to uppercase within the subquery

GROUP BY - groups rows that have the same values in the specified

Date functions: columns within the subquery

AVING - filters groups based on a specified condition within the
CURDATE() - returns the current date

CURTIME() - returns the current time

subquery

DATE() - extracts the date portion from a dateftime value __ pata manipulation commands:
DATEADD() - adds a specified time interval to a date
DATEDIFF() - returns the difference between two dates
) - retur - INSERT INTO - adds a new row to a table

DATEPART() - extracts a specified part of a date/time value Ny . .. _

) UPDATE - modifies existing data in a table
DAY() - returns the day of the month for a date value o _

DELETE - removes existing rows from a table
MONTH() - returns the month for a date value
, TRUNCATE TABLE - removes all rows from a table

NOW() - returns the current date and time
YEAR() - returns the year for a date value

-- Data definition commands:

-- Other functions:

CREATE TABLE - creates a new table
COALESCE() - returns the first non-null value in a list of values ALTER TABLE - modifies the structure of an existing table
IFNULL() - returns a specified value if a value is null DROP TABLE - deletes a table
NULLIF() - returns null if two values are equal TRUNCATE TABLE - removes all rows from a table
CREATE INDEX - creates an index on a table to improve search
performance

DROP INDEX - deletes an index from a table By Steve Nouri

-- NATURAL JOIN:

SELECT * FROM tablel RIGHT JOIN table2 0N tablel.coll = table2.col2

-- FULL OUTER JOIN:

SELECT * FROM tablel FULL OQUTER JOIN table2 ON tablel.coll =
table2.col2

-- INNER JOIN:
SELECT * FROM tablel NATURAL JOIN table2:
SELECT * FROM tablel INNER JOIN table2 oON tablel.coll = table2.col2
Outer Join . . .
This type of join automatically matches rows
-- LEFT JOIN: from both tables based on their common
columns. The common columns must have
SELECT * FROM tablel LEFT J0IN table2 ON tablel.coll = table2.col2 the same name and data type in both tables
Outer Join
-- OUTER APPLY:
—- RIGHT JOIN:

SELECT t1.*, t2.*
FROM tablel t1 OUTER APPLY table valued function(tl.coll) t2;

This type of join is similar to CROSS APPLY,
but it returns all rows from the left table,
even if there are no matching rows in the
right table.

Right Outer Join with Exclusion

SELECT *
FROM tablel
RIGHT JOIN table2 ON tablel.coll = table2.col2

WHERE tablel.coll IS NULL;

-- CROSS JOIN:

SELECT ¥* FROM tablel CROSS JOIN table2 CROSS JOIN table3;

Left OQuter Join with Exclusion
SELECT *

FROM tablel
LEFT JOIN table2 0N tablel.coll = table2.col2

WHERE table2.coll IS NULL:

This type of join allows you to apply a table-
valued function to each row in a table and
join the results to the input rows.

Full Outer Join with Exclusion

SELECT *
FROM tablel
FULL OUTER JOIN table2 ON tablel.coll = table2.col2

WHERE tablel.coll IS5 NULL OR table2.coll IS NULL;

-- SELF JOIN:

SELECT t1.col1l, t2.col2
FROM tablel t1 INNER JOIN tablel t2 ON tl.col3 = t2.col4;

Anti Semi Join

SELECT *

FROM tablel
WHERE NOT EXISTS (SELECT 1 FROM table2 WHERE tablel.coll = table2.col2);

Returns all rows from the left table that do not
have a match in the right table. Similar to a LEFT
JOIN, but it only returns the rows from the left

table that do not have a match in the right table,

Semi Join (Less duplication than Inner Join)

SELECT *

FROM tablel
WHERE EXISTS (SELECT 1 FROM table2 WHERE tablel.coll = table2.col2);

.
I

Returns only the rows from the left table that
have a match in the right table. Similar to an
INNER JOIN, but it only returns the rows from
the left table that have a match in the right
table, rather than returning all rows from both.

Two Inner Joins

SELECT *
FROM tablel INNER JOIN table2 0N tablel.coll = table2.col2

LEFT JOIN table3 On table2.col3 = table3.col4;

This query will return rows from all three tables
that have matching values in the joined columns.
It will first join table1 and table2 based on the
values in the col1 and col2 columns

Two Left Outer Joins

SELECT *
FROM tablel LEFT JOIN table2 ON tablel.coll = table2.col2

@&

LEFT JOIN table3 ON table2.col3 = table3.col4;

It returns all rows from the leftmost table, as
well as any matching rows from the other two
tables. Rows from the other two tables that do
not have a match in the leftmost table are NULL.

@® — SQL Examples (Easy to Advanced)

Sample data for the "employees" table
1d name | department salary | hired_on
1 Alice | HR 5508080 2020-01-081
2 Bob | Marketing 65800 | 2020-02-01
3 Charlie| IT 75000 | 2020-03-01
4 Dave | Sales 80000 2020-04-01
5 Eve | HR 60800 | 2020-85-01
-- Sample data for the "sales" table
id mployee id | product sale date | sale amount
1 1 | widget 2020-06-01 | 10080
2 1 | Gadget 2020-87-01 | 20080
3 2 | widget 2020-08-01 | 3000
4 2 | Gadget 2020-09-01 | 4000
5 2 | Thingamajig| 2026-16-01 5000
6 | Thingamajig| 2020-11-01 5000
7 4 | Widget 2020-12-01 | 7608
8 4 | Gadget 2021-01-01 | 8000
g | Thingamajig| 2621-62-01 1000
10 | 5 | widget 2021-03-01 | 100080
-- Sample data for the "products™ table:
id product price
1 Widget 108
2 Gadget 200
3 Thingamajig| 360

1- Retrieve all rows from the 'employees' table where the salary is greater than

65000.
SELECT * FROM employees WHERE salary > 65000;

2-Retrieve the name and department of all rows from the 'employees' table,
sorted by salary in descending order.
SELECT name, department FROM employees ORDER BY salary DESC;

3-Retrieve the product and total sales for each product in the 'sales' table,

6-Retrieve the name, product, and sale amount for all sales in the sales table that
occurred between June 1, 2020 and December 31, 2020.

SELECT e.name, p.product, s.sale_amount FROM employees e INNER JOIN
sales s ON e.id = s.employee id INNER JOIN products p ON s.product =

p.product WHERE s.sale date BETWEEN '2020-86-01' AND '20820-12-31";

7-Retrieve the name, product, and sale amount for the sale with the highest sale
amount in the sales table, along with the corresponding employee name from the
employees table.

SELECT e.name, p.product, s.sale amount FROM employees e INNER JOIN
sales s ON e.id = s.employee id INNER JOIN products p ON s.product =
p.product WHERE s.sale amount IN (SELECT MAX(sale_amount) FROM

sales);

8-Retrieve the name and manager of all employees in the employees table,
showing the name of the manager from the employees table as well.
SELECT el.name 25 manager, e2.name =5 employee FROM employees el

INNER JOIN employees e2 ON el.id

e2.manager_id;

9-Retrieve the name and number of employees for all managers in the employees

table who have at least one employee.
SELECT e.name, (SELECT COUNT(*) FROM employees WHERE manager id =

e.id) as num _employees FROM employees e WHERE num_employees > 0;

10-Retrieve the name of all employees in the employees table who do not have a

manager.
SELECT el.name, e2.name 2: manager ~ROM employees el LEFT 101N

employees e2 ON el.manager_id = e2.id WHERE e2.name IS NULL;

11-Retrieve the name and total sales for all employees in the employees table
who have made more than 5000 in sales in the past year (from the current date).

SELECT e.name, SUM(s.sale_amount) 25 total_sales FROM employees e
INNER J0IN sales s ON e.id = s.employee_id WHERE s.sale date BETWEEN
DATEADD(YEAR, -1, GETDATE()) AND GETDATE() GROUP BY e.name HAVING
SUM(s.sale_amount) > 5000;

@® —— Order of Execution

,FROM
WHERE This order can be modified by the use of subqueries or
GROUP BY | common table expressions (CTEs). In these cases, the

subquery or CTE is executed first, and the results are used in
HAVING the outer query.
SELECT
ORDER BY

sorted by total sales in descending order.
SELECT p.product, SUM(s.sale_amount) as total sales FROM sales s

INNER JOIN products p ON s.product = p.product GROUP BY p.product
ORDER BY total_sales DESC;

4-Retrieve the name and total sales for all employees in the Marketing
department from the 'employees' and 'sales' tables.

SELECT e.name, SUM(s.sale amount) =2: total sales FR0Y employees e
INNER JOIN sales s ON e.id = s.employee_id WHERE e.department =

"Marketing® GROUP BY e.name;

5-Retrieve the name, product, and sale date for all sales in the sales table where
the sale amount is greater than 2500.

SELECT e.name, p.product, s.sale date FROM employees e INNER JOIN

sales s ON e.id = s.employee id INNER JOIN products p ON s.product =

O s
L]

p.product WHERE s.sale amount > 250

By Steve Nouri

Here is an example query to show the order of execution:

SELECT e.name, SUM(s.sale_amount) as total_sales

FROM employees e

INNER JOIN sales s ON e.id = s.employee id

WHERE e.department = "Sales’ AND s.sale date BETWEEN "2020-01-081° AND
'2020-066-30°

GROUP BY e.name

HAVING SUM(s.sale amount) > 50608

ORDER BY total _sales DESC;

FROM and WHERE clauses are executed first to select the relevant rows from the
employees and sales tables. These rows are then grouped by employee name and
aggregated using the SUM function in the GROUP BY clause. The HAVING clause
filters out any groups that do not meet the specified condition. Finally, the SELECT
clause selects the name and total sales for each group, and the ORDER BY clause
sorts the results by total sales in descending order.

® —— Some Advanced Topics in SQL

1-Recursive queries: These are queries that can reference themselves in order
to perform a certain action, such as querying hierarchical data.

- Recursive queries:
WITH RECURSIVE cte_name AS (
SELECT ...

UNION [ALL]
SELECT ...
FROM cte_name
WHERE

)

SELECT ...

FROM cte_name;

2-Window functions: These are functions that perform a calculation over a set of
rows, similar to an aggregate function, but return a value for each row in the

result set.

Window functions:
SELECT coll, col2, function_name(col3) OVER (PARTITION BY coll ORDER E
col2) a5 col4

FROM table name;

3-Common table expressions (CTEs): These are named temporary result sets
that can be used within a SELECT, INSERT, UPDATE, DELETE, or CREATE VIEW
statement. They are often used to simplify complex queries by breaking them up
into smaller, more manageable pieces.

-- Common table expressions (CTEs):

WITH cte name AS (

4-Pivot tables: These are tables that allow you to transform data from rows to
columns, or vice versa, in order to generate more meaningful insights from your
data.

- Pivot tables:

SELECT *
FROM (
SELECT coll, col2, col3

ERiN

table_name

)
PIVOT (

SUM(col3)
FOR col2 1N (vall, val2, val3)

5-Analytic functions: These are functions that perform a calculation over a
group of rows and return a single value for each row in the result set.

-- Analytic functions:

SELECT coll, col2, function name(col3) OVER (PARTITION BY coll ORDER BY
col2) as cold

FROM table name;

6-Triggers: These are pieces of code that are automatically executed in
response to certain events, such as inserting, updating, or deleting data in a
table.

Iriggers:
CREATE TRIGGER trigger name
AFTER INSERT ON table_name
FOR EACH RC

il

- trigger code here
'_Il_',

7--Stored procedures: These are pre-compiled SQL statements that can be
stored in the database and executed repeatedly with different parameters.

Stored procedures:

CREATE PROCEDURE procedure_name (I paraml datatype, Il param2
datatype, ...)

BEGIN

here

procedure code

END;

CALL procedure_name(paraml value, param2 value, ...);

8-Indexes: These are data structures that are used to improve the performance
of certain types of queries by allowing the database to quickly locate the desired

data.

-- Indexes:
CREATE INDEX index name Ol table name (coll, col2, ...);
DROP INDEX index name;

9-Cursor-based processing: This is a method of processing data in which a
cursor is used to retrieve a small batch of rows from a result set, process the
rows, and then retrieve the next batch of rows until all rows have been
processed. This can be useful when working with large result sets or when the
processing needs to be done row by row.

-- Cursor-based processing:

DECLARE cursor_name CURSOR FOR SELECT coll, col2, ... FROM table_name
WHERE ...}
JPEN cursor_name;
FETCH NEXT FROM cursor name INTO variablel, variable2, ...;
WHILE @:FCTCH_STATUS =
BEGIN
[”“(J': ess _ "IE: | |::|gj!"a "|__.|r'h|‘.-

FETCH NEXT FROM cursor_name INTO variablel, variable2, ...;

END;

_LOSE cursor_name;

JCATE cursor_name,

Steve Nouri

