
DATABASE:

CREATE DATABASE database_name;
Creates a new database.

USE database_name;
Uses the specified database

DDL COMMANDS:

CREATE TABLE table_name (
column1 datatype,
column2 datatype,
column3 datatype);

The create table statement creates a new table in a database.

ALTER TABLE table_name ADD column_name datatype;
The Alter table statement is used to modify the columns of an
existing table and add a new column.

ALTER TABLE table_name DROP COLUMN column_name ;
The Alter table statement is used to modify the columns of an
existing table and Drop column.

ALTER TABLE table_name RENAME TO table_newname ;
Changes the table name for the existing table.

ALTER TABLE table_name RENAME col_name TO col_newname;
Renames the column names in the existing table.

Drop table table_name;
Drop deletes both structure and records in the table.

Truncate table table_name;
Truncate deletes the table but not the structure.

DML COMMANDS:

INSERT INTO table_name
VALUES (value1, value2);

INSERT INTO table_name (column1, column2)
VALUES (value1, value2);

The Insert into statement is used to add a new record (row) to a
table.

DELETE FROM table_name
WHERE some_column = some_value;
The delete statement is used to delete records (rows) in a

table.

UPDATE table_name
SET column1 = value1, column2 = value2
WHERE some_column = some_value;
The UPDATE statement is used to edit records (rows) in a table.

DCL COMMANDS:

GRANT SELECT, UPDATE ON TABLE_1 TO USER_1, USER_2;
Used to grant a user access privileges to a database.

REVOKE SELECT, UPDATE ON TABLE_1 FROM USER_1, USER_2;
Used to revoke the permissions from a user.

TCL COMMANDS:

COMMIT; - Saves all the transactions made on a database.
ROLLBACK; - It is used to undo transactions which are not yet
been saved.
SAVEPOINT savepoint_name; - Used to roll the transaction back to
a certain point without having to roll back the entirety of the
transaction.

DQL COMMANDS:

SELECT col1,col2.. FROM table_name;
Retrieve data from specified columns in the table

SELECT * FROM table_name;
Retrieve the data from all fields in the table.

SELECT col1,col2..FROM table_name WHERE condition;
Used to filter the records based on a particular condition.

SQL Constraints:

NOT NULL: Specifies that this column cannot store a NULL value.
UNIQUE: Specifies that this column can have only Unique values.
Primary Key: It is a field using which it is possible to
uniquely identify each row in a table.
Foreign Key: It is a field using which it is possible to
uniquely identify each row in some other table.
CHECK: It validates if all values in a column satisfy some
particular condition or not
DEFAULT: It specifies a default value for a column when no value
is specified for that field

Operators:

AND - The AND operator allows multiple conditions to be
combined. Records must match both conditions.

OR - The OR operator allows multiple conditions to be combined.
Records match either condition.

NOT - The NOT operator allows the negotiation of the condition.

BETWEEN - The BETWEEN operator can be used to filter by a range
of values.

LIKE - The LIKE operator can be used inside of a WHERE clause to
match a specified pattern.

% Wildcard - The % wildcard can be used in a LIKE operator
pattern to match zero or more unspecified character(s).

_ Wildcard - The _ wildcard can be used in a LIKE operator
pattern to match any single unspecified character.

IN - The IN operator is used to compare the specified value.

AS - Columns or tables can be aliased using the AS clause.

ALL - It compares a value to all the values in another set.

ANY - It compares the values in the list according to the
condition.

EXIST - It is used to search for the presence of a row in a
table.

SELECT column_name FROM table_name WHERE column_name IS NULL;
Column values can be NULL or have no value. These records
can be matched using the IS NULL and IS NOT NULL operators.

SELECT col1, col2 FROM table_name
UNION
SELECT col1, col2 FROM table_name;
Combine rows from two queries without any duplicates.

SELECT col1, col2 FROM table_name
UNION ALL
SELECT col1, col2 FROM table_name;
Combine rows from two queries with duplicates.

SELECT col1, col2 FROM table_name
INTERSECT
SELECT col1, col2 FROM table_name;
Return the common rows of two queries.

SELECT col1, col2 FROM table_name

MINUS
SELECT col1, col2 FROM table_name;
Returns the values from the first table after removing the
values from the second table.

Querying Data:

SELECT DISTINCT(column_name) FROM table_name;
Unique values of the columns are retrieved from the table.

SELECT * fROM table_name LIMIT 5;
Limit is used to limit the result set to the specified number of
rows.

SELECT col1, col2 FROM table_name ORDER BY col1 ASC [DESC];
Sort the result set in ascending or descending order

SELECT col1, col2 FROM table_name ORDER BY col1 LIMIT n OFFSET
offset;
Skip offset of rows and return the next n rows based on LIMIT.

SELECT col1, aggregate(col2) FROM table_name GROUP BY col1;
GROUP BY Groups rows using an aggregate function

SELECT col1, aggregate(col2) FROM table_name GROUP BY col1
HAVING condition;
Filter groups using the HAVING clause.

DESC table_name;
Describes the structure of the table.

JOINS:

SELECT col1, col2 FROM table_name t1 INNER JOIN table_name t2 ON
condition;
Inner join of two tables t1 and t2

SELECT col1, col2 FROM table_name t1 LEFT JOIN table_name t2 ON
condition;
Left join of two tables t1 and t2

SELECT col1, col2 FROM table_name t1 RIGHT JOIN table_name t2 ON
condition;
Right join of two tables t1 and t2

SELECT col1, col2 FROM table_name t1 FULL OUTER JOIN table_name
t2 ON condition;
Full outer join of two tables t1 and t2

SELECT col1, col2 FROM table_name t1 CROSS JOIN table_name t2 ON
condition;
Produce a Cartesian product of rows in tables

SELECT col1, col2 FROM table_name t1 NATURAL JOIN table_name t2
ON condition;
Takes all the Key columns from t1 and tries to match with t2
columns.

AGGREGATE FUNCTIONS:

AVG() - returns the average of a list
SUM() - returns the total of a list.
COUNT() - returns the number of elements of a list.
MIN() - returns the minimum value of a list.
MAX() - returns the maximum value of a list.

CASE:

SELECT column_name,
CASE
WHEN Condition THEN ‘output’
WHEN Condition THEN ‘output’
.
.
ELSE ‘output’
END ‘new_colname’ FROM table_name;
It works similarly to IF-ELSE and returns in the new column.

SUBQUERY:

SELECT COUNT(*) from(SELECT col1,COUNT(col2) from table_name
GROUP BY col1) AS inner_query WHERE condition;
First, the inner query executes later and the result is passed
to the outer query and it is executed.

Advanced Aggregate functions:

over()- It is a window function used inside every analytical
function.

Partition by - Creates a partition internally and later performs
the specified operations.

row_number() - Provides row numbers for all the rows based on a
specified column in the table.

rank() - Ranking is assigned to the rows based on a specified
column. Skips the rank when it contains the same values.

dense_rank() - Ranking is assigned to the rows based on a
specified column. Ranks are not skipped.

percent_rank() - Assigns the rank to the specified column within
the range of 0-1.

lag()- The first value becomes NULL. Compares the current value
with the previous value.

lead() - The last value becomes NULL. Compares the current value
with the next value.

first_value() - Gives the first value to all rows.

last_value() - Gives the last value to all rows.

Nth value()- Gives Nth value to all rows.

NTILE() - Divides the rows to ‘n’ number of small buckets.

cume_dist() - The cumulative percentage of the records is
calculated from the first row to the current row for the
specified column.

VIEWS:

SELECT VIEW view_name AS SELECT * FROM table_name;
It creates a simple view.

SELECT VIEW view_name AS SELECT col1, col2 FROM table_name t1
INNER JOIN table_name t2 ON condition;
It creates a complex view

CREATE RECURSIVE VIEW view_name AS
select-statement -- anchor part
UNION [ALL] select-statement; -- recursive part
It Creates a recursive view

CREATE TEMPORARY VIEW view_name AS SELECT col1, col2 FROM
table_name;
It Creates a temporary view

DROP VIEW view_name;
Delete a view

SQL Triggers:

CREATE OR MODIFY TRIGGER trigger_Name (Before | After) [Insert
| Update | Delete] on [Table_Name] [for each row | for each
column] [trigger_body]
Create or Modify the trigger.

DROP TRIGGER trigger_name;
Drop an already existing trigger from the table

SHOW TRIGGERS IN database_name;
Display all the triggers that are currently present in the
table.

All query elements are processed in a very strict order:
Query execution order.

● FROM - the database gets the data from tables in FROM
clause and if necessary performs the JOINs,

● WHERE - the data are filtered with conditions specified in
the WHERE clause,

● GROUP BY - the data are grouped by conditions specified in
the WHERE clause,

● Aggregate functions - the aggregate functions are applied
to the groups created in the GROUP BY phase,

● HAVING - the groups are filtered with the given condition,
● Window functions,
● SELECT - the database selects the given columns,
● DISTINCT - repeated values are removed,
● UNION/INTERSECT/EXCEPT - the database applies set

operations,
● ORDER BY - the results are sorted,
● OFFSET - the first rows are skipped,
● LIMIT/FETCH/TOP - only the first rows are selected

Advance SQL:

 1. COUNT(*) - When * is used as an argument, it simply counts
the total number of rows including the NULLs.

2. COUNT(1)- With COUNT(1), there is a misconception that it

counts records from the first column. What COUNT(1) really does

is that it replaces all the records you get from query results

with the value 1 and then counts the rows meaning it even

replaces a NULL with 1 meaning it takes NULLs into consideration

while counting.

3. COUNT(column_name)- When a column name is used as an

argument, it simply counts the total number of rows excluding

the NULLs meaning it will not take NULLs into consideration.

COUNT() function with the DISTINCT clause eliminates the
repetitive appearance of the same data. The DISTINCT can come
only once in a given select statement.

COUNT(DISTINCT expr,[expr...])

APPROX_COUNT_DISTINCT is useful if an exact result is not
required.

● Compared to SELECT COUNT(DISTINCT <column>), which
calculates the exact number of distinct values in a column
of the table, APPROX_COUNT_DISTINCT can run much faster and
consume significantly less memory.

● The implementation of APPROX_COUNT_DISTINCT() has a much
smaller memory requirement as compared to the
COUNT(DISTINCT) function.

LOWER()- The LOWER() function converts a string to lowercase.

UPPER()- The UPPER() function converts a string to uppercase.

REGEXP_CONTAINS():

● Returns TRUE if the value is a partial match for the

regular expression, regex.

● If the regex argument is invalid, the function returns an

error.

● You can search for a full match by using ^ (beginning of

text) and $ (end of text).

● Syntax: REGEXP_CONTAINS(value, regex)

REGEXP_EXTRACT():

● Returns the first substring in value that matches the

regular expression, regex. Returns NULL if there is no

match.

● If the regular expression contains a capturing group, the

function returns the substring that is matched by that

capturing group.

● If the expression does not contain a capturing group, the

function returns the entire matching substring.

● Returns an error if:

● The regular expression is invalid

● The regular expression has more than one capturing
group

● Syntax: REGEXP_EXTRACT(value, regex)

SQL Indexes

● A SQL index is a quick lookup table used to quickly retrieve data

from a database.

● Indexes are generally used for large databases. They are small,

fast, and less memory-consuming.

● Indexing a table or view surely improves the performance of queries

and applications.

Creating a search index: Indexes are created for one or more columns

in a table, using the CREATE INDEX command.

Syntax:

CREATE SEARCH INDEX index_name

ON `dataset.table_name` (column_name);

Dropping a search index: An index can be dropped using SQL DROP

command.

Syntax:

DROP SEARCH INDEX index_name ON `dataset.table_name`;

SQL Partitioning

● Partitioning is a database process where very large tables are

divided into multiple smaller, individual parts.

● By splitting a large table, queries that access only limited

amount of data can run faster because there is less data to

scan.

● You can partition BigQuery tables by:

○ Time-unit column:Tables are partitioned based on a

TIMESTAMP, DATE, or DATETIME column in the table.

○ Ingestion time:Tables are partitioned based on the

timestamp when BigQuery ingests the data.

○ Integer range:Tables are partitioned based on an integer

column.

○ Use the CREATE TABLE statement with a SELECT AS clause for

the query. Include a PARTITION BY clause to configure the

partitioning.

● Copying individual partitions:

○ You can copy the data from one or more partitions to

another table.

○ Copying partitions is not supported by Console.

○ However you can copy them using the API.

● Deleting a partition

○ You can delete an individual partition from a partitioned

table.

○ But you can't delete the special NULL or UNPARTITIONED

partitions.

○ You can only delete one partition at a time.

